机器学习之MNIST 发表于 2018-08-15 | 分类于 机器学习 | 1、input_data数据下载链接:https://pan.baidu.com/s/13iaQNaYFsBJO6uQH6wX2lg 密码:ek1m 2、Demo123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114import input_dataimport tensorflow as tf# 加载MNIST数据mnist = input_data.read_data_sets('MNIST_data', one_hot=True)# 运行TensorFlow的InteractiveSessionsess = tf.InteractiveSession()# 占位符x = tf.placeholder("float", shape=[None, 784])y_ = tf.placeholder("float", shape=[None, 10])# 权重初始化def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial)def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial)'''卷积和池化我们的卷积使用1步长(stride size),0边距(padding size)的模板,保证输出和输入是同一个大小。我们的池化用简单传统的2x2大小的模板做max pooling。为了代码更简洁,我们把这部分抽象成一个函数。'''def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')'''第一层卷积卷积在每个5x5的patch中算出32个特征。卷积的权重张量形状是[5, 5, 1, 32],前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。 而对于每一个输出通道都有一个对应的偏置量。'''W_conv1 = weight_variable([5, 5, 1, 32])b_conv1 = bias_variable([32])x_image = tf.reshape(x, [-1,28,28,1])h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)h_pool1 = max_pool_2x2(h_conv1)'''第二层卷积为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征。'''W_conv2 = weight_variable([5, 5, 32, 64])b_conv2 = bias_variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)h_pool2 = max_pool_2x2(h_conv2)'''密集连接层现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。'''W_fc1 = weight_variable([7 * 7 * 64, 1024])b_fc1 = bias_variable([1024])h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)'''Dropout为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。 TensorFlow的tf.nn.dropout操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。'''keep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)'''输出层最后,我们添加一个softmax层'''W_fc2 = weight_variable([1024, 10])b_fc2 = bias_variable([10])y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)'''训练和评估模型'''cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))sess.run(tf.global_variables_initializer())for i in range(1000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g" % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})print("test accuracy %g" % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) 这个最终结果值应该大约是96%,可以增加训练次数,可以增加正确率。